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According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior 
that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not 
optimize any global criterion per se, and so there is no apparent reason why it should be close to a solution of 
minimal total travel time, i.e., the system optimum. In this paper, we offer positive results on the efficiency of 
Nash equilibria in traffic networks. In contrast to prior work, we present results for networks with capacities and 
for latency functions that are nonconvex, nondifferentiable, and even discontinuous. 

The inclusion of upper bounds on are flows has early been recognized as an important means to provide a 
more accurate description of traffic flows. In this more general model, multiple Nash equilibria may exist and 
an arbitrary equilibrium does not need to be nearly efficient. Nonetheless, our main result shows that the best 
equilibrium is as efficient as in the model without capacities. Moreover, this holds true for broader classes of travel 
cost functions than considered hitherto. 

Key words: selfish routing; price of anarchy; traffic assignment; system optimum; Nash equilibrium; performance 
guarantee; multicommodity flow 
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1. Introduction. It is a common behavioral assumption in the study of traffic networks 
modeling congestion effects and therefore featuring flow-dependent link travel times, that 
travelers choose routes that they perceive as being the shortest under the prevailing traffic 
conditions. In other words, travelers minimize their individual travel times (Kohl 1841). 
The situation resulting from these individual decisions is one where drivers cannot reduce 
their journey times by unilaterally choosing another route, which prompted Knight (1924) 
to call the resulting traffic pattern an equilibrium. Nowadays it is indeed known as the user 
equilibrium (Dafermos and Sparrow 1969), and it is effectively thought of as a steady state 
evolving after a transient phase where travelers successively adjust their route choices until 
a situation with stable route travel costs and route flows has been reached (Larsson and 
Patriksson 1999). In a seminal contribution, Wardrop (1952, p 345) stated two principles 
that formalize this notion of equilibrium and the alternative postulate of the minimization 
of the total travel costs. His first principle reads: 

The journey times on all the routes actually used are equal, and less than those which would be 
experienced by a single vehicle on any unused route. 

Wardrop's first principle of route choice, which is identical to the notion postulated by 
Kohl (1841) and Knight (1924), became accepted as a sound and simple behavioral principle 
to describe the spreading of trips over alternate routes due to congested conditions (Florian 
1999). The connection between a traffic pattern satisfying Wardrop's first principle and a 
Nash equilibrium of a network game among the trip-makers was first formulated by Charnes 
and Cooper (1961). Indeed, in real urban traffic systems, observed flows are likely to be 
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closer to a user than a system optimum (Downs 1962). The system optimum is characterized 
by Wardrop's second principle (p. 345): 

The average journey time is a minimum. 

Not surprisingly, the total (or equivalently, average) travel time is generally not minimized 
by the user equilibrium, because users do not pay for their external costs (Dupuit 1849, 
Pigou 1920, Knight 1924). Hence, the recent result that user equilibria are near optimal 
(Roughgarden and Tardos 2002) came as a welcome surprise. In fact, they showed that 
the total travel time (also called total latency) of a user equilibrium in an uncapacitated 
multicommodity flow network (the framework of the work discussed above) is at most that 
of an optimal routing of twice as much traffic in the same network. Moreover, the total 
latency of selfish routing is at most 4/3 times that of the best coordinated routing, when 
latencies depend linearly on congestion. Furthermore, Roughgarden (2003) proved that the 
worst-case inefficiency due to selfish routing is independent of the network topology. More 
specifically, any given family 2 of latency functions gives rise to a parameter a(E), which 
can be computed on a simple, single-commodity network, so that for any uncapacitated 
network with multiple commodities the total latency of the user equilibrium is at most a(SL) 
times that of the system optimum. It is important to point out that Roughgarden's analysis 
only works for latency functions that are nondecreasing, differentiable, and their respective 
products with the identity function are convex. 

In this paper, we extend the work of Roughgarden and Tardos (2002) and Roughgarden 
(2003) to network models that are more realistic. We introduce and analyze user equilibria in 
capacitated networks with more general classes of latency functions. In contrast to networks 
without capacities, the set of user equilibria is no longer convex and an equilibrium can 
be arbitrarily worse than the system optimum, even if arc latency functions are linear. 
However, we prove that adding capacities does not change the worst ratio between the best 
user equilibrium and the system optimum, given an arbitrary but fixed class of allowable 
latency functions. In other words, while Roughgarden showed that the worst ratio of the 
total latency of a user equilibrium to that of a corresponding system optimum does not 
depend on the topology of the network, we establish that this ratio is also independent of 
arc capacities, as long as one considers the best equilibrium. Practically all results remain 
actually true for more general side constraints. For simplicity of presentation, we restrict 
ourselves to capacity constraints (see S6 for additional details). Moreover, we provide simple 
proofs of these results, which are, in addition, valid for general nondecreasing functions 
(not necessarily differentiable or convex, and just lower semicontinuous). 

This paper is organized as follows. Section 2 introduces the specifics of the basic model 
together with the obligatory notation. It also features a new, simpler proof of the original 
result of Roughgarden and Tardos (2002) that helps to set the stage for the subsequent 
discourse. In fact, the model with arc capacities and more general latency functions is the 
subject of S3. There, we also discuss the relevance of network models with capacities and 
less restricted families of travel cost functions. Applications to specific classes of latency 
functions are discussed in S4. While the previous sections still assume continuous functions, 
we take a separate look at lower semicontinuous travel cost functions in S5. Section 6 
contains our concluding remarks. 

2. The basic model. We consider a directed network D = (N, A) and a set K C N x N 
of origin-destination (OD) pairs. For each k e K, a flow of rate dk must be routed from 
the origin to the destination. In the context of traffic or other communication networks, 
such demands are typically assumed to be arbitrarily divisible; in fact, the route decision 
of a single individual has only an infinitesimal impact on other users. For k E K, let Pk 
be the set of directed (simple) paths in D connecting the corresponding origin with its 
destination, and let P := UJ k. Furthermore, a nonnegative, nondecreasing, and continuous 
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latency function La with values in [R> U {oo} maps the flow on arc a to the time needed to 
traverse a. (We drop the continuity assumption later; see S5.) A path flow is a nonnegative 
vector f = (f,),,, that meets the demand, i.e., 

C,0 
f, = dk for k E K. Given a path flow, 

the corresponding are flow is easily computed as fa = 
0P0a 

f, for each a e A. For a flow f, 
the travel time along a path P is ep(f) := ZOP ea(fa). Hence, the flow's total travel time 
is C(f) := 

"ZPE, 
(f)f, = EaeA ea(fa)fa. The cost function Cf with constant latencies 

(:= ~ea(fa) plays an important role; here, f is a given feasible flow. For a feasible flow x, 
Cf(x) := 

ZaEA L~xa. Note that Cf(f) = C(f). 
A system optimum f* is an optimal solution to the following nonlinear min-cost multi- 

commodity flow problem with separable objective function: 

(2. la) min L ea(fa)fa 
aEA 

(2.1b) s.t. >f, =fa for all a eA, 
Pga 

(2.1c) fP=dk forallkeK, 

(2.d) f 0 forallPePEkP. (2.1id) ft, >0O for all P E . 

Roughgarden (2003) assumed that 
,a(x) 

is differentiable and ea(x)x is convex, for each are 
a E A. If that is the case, a flow f* is optimal if and only if 

(2.2) ) L*(f*) < g (f*) for all k E K and all paths P, Q e Pk such that f, > 0. 
aEP aEQ 

Here, e:(fa) := ea(fa) + e'(fa)f0. In other words, f* is optimal if and only if the marginal 
travel cost of any used path is not greater than that of any other path. It is no accident that 
this condition closely resembles that of a user equilibrium. In fact, the difference between 
private cost and social cost is ea(f0)fa; hence, a flow f is in equilibrium if and only if 

(2.3) i1a (fa) < 
Z La (fa) for all k E K and all paths P, Q e -k such that f, > 0. 

aEP aEQ 

In turn, (2.3) can be interpreted as the optimality conditions of a convex min-cost multicom- 
modity flow problem like (2.1), where (2.1a) is replaced by Laea 

faa 

e,(x) dx (Beckmann 
et al. 1956). (Note that Roughgarden's (2003) assumptions on latency functions are not 
required for that to be true; indeed, continuity and monotonicity suffice.) In particular, a 
user equilibrium always exists, its total latency is unique, and it can be computed efficiently 
using standard procedures. For an extensive discussion of algorithmic techniques and related 
aspects, we refer the reader to Magnanti (1984), Sheffi (1985), Patriksson (1994), and Flo- 
rian and Hearn (1995). There, we are particularly interested in an equivalent characterization 
in terms of a variational inequality problem due to Smith (1979) (see also Dafermos 1980). 
Accordingly, a flow f is a user equilibrium if and only if 

(2.4) cf(f)i Cf(,) for all flows x. 

Note that this inequality is a direct consequence of the fact that in equilibrium, users travel 
on shortest paths with respect to are costs ef. 

We are now ready to give a different proof of the main result of Roughgarden and 
Tardos (2002) for linear latency functions ea(x) = q0x + ra with qa, r0 > 0 for all a e A. 
Note that linear travel time functions are sufficient for the occurrence of certain congestion 
phenomena. One interesting example is the so-called Braess Paradox (Braess 1968), which 
describes the fact that the addition of a link to a network can result in increased travel 
times for all users in an equilibrium state. The following result as well as our main result 
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on general latency functions and networks with capacities (Theorem 3.6) also provide a 
worst-case bound on the degradation of the total (and therefore average) travel time that 
can possibly be caused by the Braess Paradox. 

THEOREM 2.1 (ROUGHGARDEN AND TARDOS 2002). Let f be a user equilibrium and 
let f* be a system optimum for an instance of (2.1) with linear latency functions. Then, 

C(f) ) FC(f*).r 

PROOF. Let x be a feasible flow. From condition (2.4), C(f)< Cf(x). Furthermore, 

1 1 
cf(x)= (qafa +r0a)x0 < >(qax + r)x+ + 

qfa2 C(f), 
aeA aeA aeA 

where the first inequality holds because (xa -fa/2)2 > O. It follows that C(f) < C(x) for 
any feasible flow x. Hence, C(f) < C(f*). O 

Let us make a remark that simultaneously is a preview: exactly the same proof works 
for networks with capacities on arcs. In fact, one can use Lemma 3.3 in lieu of condition 
(2.4). Moreover, Corollary 4.3 further generalizes this worst-case bound of 4/3 to travel 
cost functions e satisfying e(cx) > ce(x) for c e [0, 1] (with the only restriction that they 
are nonnegative, nondecreasing, and lower semicontinuous). This includes, among others, 
concave functions. 

3. Networks with capacities. The link performance functions ea relate the average 
travel times to the traffic rates fa on the links a e A. To account for congestion effects, 
these functions are typically nonlinear, positive, and strictly increasing with flow (Patriksson 
1994, p. 29). In practice, the most frequently used functions are polynomials whose degrees 
and coefficients are determined from real-world data through statistical methods (Patriksson 
1994, p. 70). Branston (1976) and Larsson and Patriksson (1995) argue that functions of 
this kind are unrealistic in the sense that the resulting travel times are finite whenever the 
are flows are finite, so that the arcs are actually assumed to be able to carry arbitrarily 
large volumes of traffic flows; in practice, however, road links have some finite limits on 
traffic flows. Moreover, they point out that travel times predicted in the overloaded range 
do not have a real meaning. In connection with this deficiency, Hearn (1980) notes that in 
the basic model described in S2, "the predicted flow on some links will be far lower or far 
greater than the traffic engineer knows they should be if all assumptions of the model are 
correct" (p. 1). Hearn and others, in particular Larsson and Patriksson (1994, 1995, 1999), 
and most recently, Marcotte et al. (2004), have therefore advocated the inclusion of arc 
flow capacities as an obvious way of improving the quality of traffic assignment models. 
Interestingly, the widely popular link delay formula proposed by the Bureau of Public Roads 
(1964) includes a capacity parameter. 

A frequently used way to (implicitly) incorporate capacities is to employ volume delay 
formulas that tend to infinity as the are flow approaches the arc capacity; see, e.g., Branston 
(1976) for a discussion. Boyce et al. (1981) have empirically found that asymptotic travel 
time functions yield unrealistically high travel times and devious rerouting of trips. In 
addition, Larsson and Patriksson (1995) criticize the inherent numerical ill conditioning of 
this approach. They go on to exalt the extension of the basic model by including explicit arc 
capacities as an interesting alternative to the use of asymmetric traffic assignment models, 
where such extensions are made through the development of complex travel cost functions, 
which, in practical applications, are difficult to calibrate. In fact, the link flow pattern 
found by solving a capacitated model may also be found by solving the corresponding 
uncapacitated problem with travel time functions adjusted by the corresponding optimal 
shadow prices. The solution of a capacitated problem can therefore be used as a tool for 
guiding the traffic engineers in correcting the travel time functions so as to bring the flow 
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pattern into agreement with the anticipated results (Hearn 1980). In a related application, 
the introduction of capacities can be used to derive tolls for the reduction of flows on 
overloaded links (Hearn and Ramana 1998); see Bernstein and Smith (1994) for additional 
references. 

It is worth mentioning that some traffic control policies give rise to link flow capacity 
constraints (Yang and Yagar 1994), that some of the first mathematical models of traffic 
assignment problems use link flow capacity constraints to model congestion effects (Charnes 
and Cooper 1961), and that several authors discuss the consequences of including capacities 
on existing algorithms for the uncapacitated case (Daganzo 1977a, b; Hearn 1980; Hearn 
and Ribera 1980, 1981; Larsson and Patriksson 1994, 1995, 1999). 

A solution to an explicitly capacitated traffic assignment problem will, in the user equi- 
librium case, no longer comply with Wardrop's (1952) first principle. Hence, following 
Jorgensen (1963) and Larsson and Patriksson (1995), let us first extend the notion of a 
user equilibrium to networks with arc capacities. Before we do so, we formally associate a 
nonnegative capacity ca with each arc a e A (which may be o). Moreover, we call a flow 
f feasible if it satisfies all upper bound constraints fa < ca for a s A. For convenience, 
we henceforth assume that we only consider instances that possess a feasible flow. A path 
P e P is said to be unsaturated with respect to a given feasible flow f if and only if fa < ca 
for all arcs a E P. Otherwise, it is called saturated. 

DEFINITION 3.1. A flow f represents a (capacitated) user equilibrium if no OD pair 
has an unsaturated path with strictly smaller cost than any path used for that pair. That is, 
if fp > 0 for Pe k, then C,(f) < min{eQ(f): Q e Pk unsaturated}. 

In the uncapacitated case, Definition 3.1 is obviously equivalent to Wardrop's first prin- 
ciple, because all paths are unsaturated. In particular, all used paths in 1k are of equal (and 
actually minimal) latency. In contrast, the flow-carrying paths between the same OD pair in 
a capacitated user equilibrium can have different latencies (and are therefore not necessarily 
of minimal length). If we define Lk(f) := max{e~(f): P E G, fP > 0}, a user equilibrium f 
satisfies the following conditions: If e,(f) > Lk(f), then f, = 0; if 

(p(f) 
< Lk(f), then 

P is saturated. In other words, we can partition k into three sets: paths that are short 
and saturated, paths that have a common length equal to Lk (f), and longer paths without 
flow. 

3.1. Inefficiency, nonuniqueness, and nonconvexity of capacitated user equilibria. 
In networks without capacities, the user equilibrium is essentially unique; in particular, 
different equilibria, if any, share the same total latency. An important effect of arc capacities 
is the existence of multiple equilibria, which is caused by the saturation of some arcs that 
restrict the route choice for the remaining users. Figure 1 provides an example with two 
commodities. The nodes on the left represent one OD pair, while the nodes on the right form 

2 

2 , 

1 

0 

ca= 2 

0 

1 

0 

0 

x 

2 

2 

2 

1 

0 1 2v 

feasible flows 

UE 

FIGURE 1. Example showing that the set of user equilibria can be nonconvex. The instance is on the left-hand 
side. The graph on the right depicts the space of flows. The heavy solid line represents the set of user equilibria 
(UE). 
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the other OD pair. The demand rate is 2 in both cases. Arc labels indicate the corresponding 
latency functions; the are in the center is the only one with finite capacity. Every user has 
two options: the route that goes through the center and the alternative at the side. One can 
represent any feasible flow in this network using two variables. Let v and w denote the 
flow that is routed through the common arc corresponding to the left and the right OD 
pair, respectively. Thus, the set of all feasible flows is in one-to-one correspondence with 
{v, w E [0, 2]: v + w < 2} because the capacity constraint must be obeyed and the flow 
on the four paths must be nonnegative. According to Definition 3.1, a feasible flow is a 
capacitated user equilibrium if and only if one of the following two conditions holds: 

(i) w = 1, i.e., the travel times along both paths for the OD pair on the right are the 
same, 

(ii) v + w = 2 and w < 1, i.e., the common arc is used up to capacity and the alternative 
path for the OD pair on the right has higher cost. 

Consequently, multiple equilibria with different total travel times can exist. This example 
additionally shows that the space of equilibria is in general not convex. Indeed, the right part 
of Figure 1 shows that the projection of the space of flows into the v, w-plane is nonconvex. 

Moreover, the price of anarchy (Papadimitriou 2001), the ratio of the cost of the worst 
user equilibrium to that of the system optimum, is in general unbounded, too. For that, 
consider the single commodity instance shown in Figure 2. Arc labels again represent the 
corresponding latency functions; two arcs have finite capacity. The flow that routes 1/2 
on the only path consisting of three arcs and 1/2 on the arc with constant cost M is a 
capacitated user equilibrium. Its total travel time is ( + 0 + ) + M = (M+1). On the 
other hand, the system-optimal flow, which incidentally happens to be another capacitated 
user equilibrium, routes 1/2 on each of the two paths with two arcs. Its total travel time is 

2) (( + 1) = t. Clearly, the ratio of the two values goes to infinity when M - oo. 
It is worth mentioning that the definition of a capacitated user equilibrium includes solu- 

tions that Marcotte et al. (2004) consider "less natural" because drivers could contribute 
to the saturation of a shorter path by using a longer path that shares the same bottleneck 
arc with the shorter one. Actually, an alternative extension of the uncapacitated equilibrium 
concept is the following: 

(3.1) No arbitrarily small bundle of drivers on a common path can strictly decrease 
its cost by switching to another path. 

This definition coincides with the definition of a user equilibrium in Bernstein and Smith 
(1994) if, in lieu of working with explicit arc capacities, one assumes that latency functions 
jump to +oo as soon as arc capacities are exceeded. 

While Definition 3.1 and (3.1) are equivalent for uncapacitated networks with continuous 
and monotone travel cost functions, this is not necessarily the case when some are capacities 
are finite. For example, the problem alluded to by Marcotte et al. is obviously eliminated 
by (3.1). Because Definition 3.1 is more comprehensive than the principle described by 

M 

1 ' 
x 

x 

ca 2 

C = - 

1 0 

1 

FIGURE 2. Instance with arbitrarily bad equilibria. 
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(3.1), we chose to go for the broader notion. Nonetheless, the examples given in Figures 1 
and 2 are also valid for the more restricted concept. Moreover, the particular equilibrium 
that we single out next to overcome the difficulty of characterizing the best capacitated user 
equilibrium in a not necessarily convex space, also satisfies (3.1). 

3.2. The BMW equilibrium. The natural way of extending the mathematical program- 
ming approach of Beckmann et al. (1956) for computing user equilibria is the inclusion of 
capacities as additional constraints. To that effect, we define a BMW equilibrium to be an 
optimal solution to the following problem: 

(3.2a) min l 
e(x) 

dx 
aeA 

(3.2b) s.t. >Zfp=fa forallaeA, 
P3a 

(3.2c) fP= d, forall k e K, 
PEI=k 

(3.2d) fa ca forall a A, 

(3.2e) f, >O 0 forall 
Pe0 

P. 

As this amounts to minimizing a convex function over a nonempty polytope, the set of 
optimal flows is nonempty and convex. For the example in the previous section, the set of 
all BMW equilibria is given by {0 < v < 1, w = 1}, as illustrated in Figure 3. Note that 
a BMW equilibrium is not necessarily the most efficient equilibrium; it is just one that 
has a good characterization. It is this structure that helps us to carry forward some of the 
results known from networks without capacities. Let us first show that a BMW equilibrium 
is indeed a capacitated user equilibrium in the sense of (3.1) and hence Definition 3.1. 

LEMMA 3.2. Iff is a BMW equilibrium, then it is a capacitated user equilibrium. 

PROOF. To show that (3.1) holds, suppose to the contrary that there are two paths Q, 
R e k for some OD pair k with fQ > 0 such that eg(f") < e0(f), where 

fQ-e 
ifP=Q, 

f f, + e if P = R, for PeP 

fP otherwise, 

is a feasible flow for all 0 < e < for some e. Now, keep x := f" fixed and consider 

(xa - fa)ea(fLa) = E(xp - 
fe)Le(f)= 

=(eR(f) - eQ(f)). 
aEA PE:P 

24 2 

1 

0 
0 1 2 

V 

BMW LUE 

feasible flows 

FIGURE 3. Convexity of BMW equilibria. 
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Because latency functions are continuous and nondecreasing, it follows that 4,(f)- 

Ca(f) 
< 0 and so we have a contradiction to (3.3) below. O 

Similarly to condition (2.2), first-order optimality conditions imply that a flow f is a 
BMW equilibrium if and only if 

(3.3) haea(fa) >O 0 
aEA 

for all feasible directions h. 

LEMMA 3.3. A feasible flow f is a BMW equilibrium of a network with arc capacities 
if and only if 

(3.4) c'(f)l Cf(,) for all feasible flows x. 

PROOF. Let x be any feasible flow. Hence, x- f is a feasible direction at f (and all 
feasible directions can be obtained in this way). Therefore, condition (3.3) is equivalent to 

L(xa - fa)ea(fa) > 0, 
aEA 

which is just (3.4). O 
It is interesting to note that the model (3.2a)-(3.2e) has been used before without the 

formal introduction of the concept of a capacitated user equilibrium. The model (3.2) has 
been used before (see Daganzo 1977a, b; Hearn 1980, Hearn and Ribera 1980, 1981; 
Larsson and Patriksson 1995, 1999, among others). In particular, Hearn (1980) noted that a 
BMW equilibrium is an uncapacitated user equilibrium with respect to latencies 

ea(')+ ya, 
where ya > 0 is the shadow price (Karush-Kuhn-Tucker multiplier) of the capacity con- 
straint xa < ca for are a E A in an optimal solution to (3.2). This point of view facilitates 
an alternative proof of (3.4). In fact, let f be a BMW equilibrium and x be any feasible 
flow. Then, 

cf (f) = L La(fa)fa + E Ya(fa - ca) 
aeA aeA 

= Z(ea(fa)+ - Y)fa - yaca 
aeA aeA 

1 >ZGea(fa) + Y0)X0 - y rc0 
aeA aeA 

= L ea(fa)xa + 
a(xa- Ca) 

aeA aeA 

Here, the first equality follows from complementary slackness. The first inequality uses 
(2.4) for uncapacitated user equilibria, while the second one makes use of the feasiblity 
of x. 

Like its counterpart (2.4) for uncapacitated networks, condition (3.4) is crucial for proving 
results on the efficiency of BMW equilibria. But let us first discuss another good reason 
for paying attention to BMW equilibria. Suppose one would forgo explicit arc capacities 
and would instead incorporate barrier terms in the latency functions. More specifically, let 

te F 

R>_0 
be a penalty parameter and consider the modified latency functions LL(xa) = 

ea(xa) + 
p1/(Ca 

- 
Xa) for all arcs a with finite capacities, with the understanding that the 

barrier term equals +oo for xa > ca. The next lemma essentially shows that in the limit (for 
S-~ 0), selfish users behave like they would at a BMW equilibrium. 

LEMMA 3.4. Let (pi) be a parameter sequence with 0 < 
,it 

< pi for i = 0, 1 .. . and 

- , O. Let (f') be the corresponding sequence of user equilibria in the network without 
capacities but with modified latencies 

eai. 
Every limit point of the sequence (fi) is a BMW 

equilibrium of the original instance (i.e., with capacities). 
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PROOF. According to Beckmann et al. (1956), each user equilibrium f' minimizes the 
following objective function, subject to (3.2b), (3.2c), and (3.2e): 

(3.5) ( ) + dx. 
aeA 0Ca 

- 

Hence, f' also minimizes 

(3.6) C ea(x) dx - 
J0i 

In(ca - fa), 
aeA a0A 

which differs from (3.5) by a constant. As the second term in (3.6) is a barrier function as 
well, it follows that each limit point of (fi) is an optimal solution of the original problem 
(3.2) (see, e.g., Bertsekas 1999, Proposition 4.1.1). O 

Although each convergent subsequence converges to a BMW equilibrium, it is not true 
that the coordination ratio of an instance in which capacities are enforced by using modified 
latency functions approaches the coordination ratio of a BMW equilibrium of the capacitated 
instance. In other words, if the subsequence (fi) of user equilibria converges to the BMW 
equilibrium f, then in general 

(3.7) 
Ci(fi) 

sm 
C(f) (3.7) .) CR< ( f 1*) C(f' *) 

Here, f* and 
fJ. 

are system-optimal solutions corresponding to the instances for which 
f and f' are user equilibria, respectively, and CI is the cost with respect to latencies L(. 
In fact, consider a network of two parallel arcs connecting a single origin with a single 
destination of demand rate 2. One of the arcs has unit latency and unit capacity while the 
second arc has latency equal to 2 and infinite capacity. Both the BMW equilibrium and 
the system optimum route one unit of flow along each arc. The total travel time of both 
solutions is 3. If we try to enforce the capacity of the first arc with the help of a barrier term, 
its latency becomes 1 + p(1 - x)-'. The corresponding user equilibrium is (1 - ,, 1 + p); 
here, the first coordinate refers to the capacitated arc. As both latency functions evaluate 
to 2, the total travel time is 4. The optimal flow is (1 - ~/7, 1 + /-), and its total travel 
time is 3 - t + 2Vp. While the sequence { (1 - a, 1 + p) } converges to the capacitated 
user equilibrium (1, 1) for , -+ 0, the corresponding sequence of total travel times remains 
constant at 4. Hence, the left-hand side of (3.7) converges to 4/3 and not to 1, the value of 
the right-hand side. 

3.3. The efficiency of BMW equilibria. We now present upper bounds on the inef- 
ficiency of any BMW equilibrium. Recall from S3.1 that an arbitrary capacitated user 
equilibrium can be arbitrarily inefficient (in contrast to the situation in networks without 
capacities). We first focus on a bicriteria result similar to Theorem 3.1 in Roughgarden and 
Tardos (2002). 

THEOREM 3.5. Consider an instance of the capacitated traffic assignment model (3.2b)- 
(3.2e) with continuous and nondecreasing latency functions. If f is a BMW equilibrium for 
that instance and x is a feasible flow for the same network but with demands and capacities 
doubled, then C(f) C(x). 

PROOF. Like Roughgarden and Tardos (2002), we start by modifying the original latency 
functions a. Namely, 

a(Xa) 
ea(fa) if 

xa <f 
a, ea(xa) if 

xa 

_ 

f~ 
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The increase of the cost of x with respect to the new latencies is bounded by the following 
expression: 

C(x) - C(x) = L(ea(xa) - La(Xa))Xa < 
L La(fa)fa = C(f), 

aEA aEA 

where the inequality follows directly from the definition of L(-). Using e,(x) > L-(0) = 

ep(f) for any path P, we also obtain 

C(x) = L 
,(x)x, > l ,(f)x, = Cf (x). 

PE0P PEP 

Because x/2 is feasible for the original instance, condition (3.4) implies that Cf(x/2) 
C(f). Eventually, putting the three inequalities together yields 

C(f) = 2C(f) - C(f) < 2Cf(x/2) - C(f) = Cf (x) - C(f) < C(x) - C(f) < C(x). O 

Note that the theorem remains true for capacities less than twice the original capacities, 
so long as the new instance still has a feasible solution for twice the demand. 

We now turn our attention to the main result, a direct bound on the inefficiency of any 
BMW equilibrium. We shall continue to assume that latency functions are just continuous 
and nondecreasing. Let 2 be a family of latency functions of that kind. For example, 2E 
could be the polynomials of degree at most n. For every function e e e and every value 
v > 0, let us define 

1 
(3.8) /3(v, ) := max{x(((v) - (x)), vL (v) o 

where by convention 0/0 = 0. It is obvious that P(v, e) > 0 and because x(e(v) - e(x)) < 0 
for x > v, we could have restricted the maximum to the interval [0, v]. In addition, let us 
define f(e) := sup,>o P(v, L) and f(5) := sup,,, P(C). Note that 

f(.) _ 
1. 

THEOREM 3.6. Let Se be a family of continuous, nondecreasing latency functions. Con- 
sider an instance of the capacitated traffic assignment model (3.2b)-(3.2e) with latency 
functions drawn from i. Then, the ratio of the total travel time of a BMW equilibrium f 
to that of a system optimum f* is bounded from above by (1 - f3(5))-', i.e., 

1 
C(f) < C(f*). 1 -/3(0I) 

PROOF. Let x be a feasible flow. By definition Cf(x) = >aE a(fa)Xa; hence, 

(3.9) Cf(x) < 
L P(fa, 

ea)e0(fa)f+ 
+ L ea(xa)xa < f(L)C(f)+ C(x). 

aEA aEA 

From Lemma 3.3, C(f) < C/(x), and the claim follows by applying (3.9) to x = f*. O 
In spite of the simplicity of its proof, the power and flexibility of Theorem 3.6 will 

become evident when we relate it to the main result of Roughgarden (2003) next and 
demonstrate several further implications in 94. The key was to get the definition of f(2e) 
"right." 

3.4. The parameter 3(Se) and the anarchy value a(S). Let SE be a given family 
of latency functions. We now relate f(SL) to the "anarchy value" a(S) introduced by 
Roughgarden (2003). To do so, we have to assume that, in addition to being continuous 
and monotone, e is differentiable and x4(x) is convex for all e e S (i.e., the setting of 
Roughgarden). The anarchy value a(e) of a latency function L is 

[ e(A v 
)] - 

a(E) := sup A + (1 - A) 
v>0: t(v)>0 e(v) 
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e(x) 

V . 

e(v) 

v 

FIGURE 4. Tight instance for the price of anarchy. 

where A E [0, 1] solves e*(Av) = e(v). By rearranging terms, 

a~s)1- 
sup 

A (v) (Av)) v>0: t(v)>0 
e(v 

) 

and we can prove that a(e) = (1 - P(e))-l. Indeed, if we use x = Av in the definition 
of f(Q), it is clear that a(e) 

_ 
(1 - fl(e))-'. For the other inequality, consider a given v. 

Because x(e(v) - e(x)) is concave and its value in 0 and v is zero, there is a point x* e (0, v) 
that attains the maximum. From the differentiability of e, (x(e(v)- e(x)))' evaluated at 
x = x* equals zero. Therefore, A = x*/v satisfies e*(Av) = e(v), as required. 

Hence, the anarchy value a(5f) := 
super2 

a(e) of a class 5 is equal to (1 - f(5f))-' 
Therefore, Theorem 3.6 not only implies Roughgarden's main result (Roughgarden 2003, 
Theorem 3.8) but also extends it to functions e that are not necessarily differentiable and 
that do not necessarily satisfy that xe(x) is a convex function of x. Moreover, it does not 
matter if arcs have finite capacities. 

We conclude this section by showing that the bound given in Theorem 3.6 is tight. In 
fact, if 5 contains the constant functions, this bound is attained by a single-commodity 
network consisting of two parallel arcs, which essentially reflects the independence of the 
network topology property highlighted by Roughgarden. Let us assume that the value 3(Se) 
is achieved for e eE and v > 0. (Although we could use a convergent sequence if the 
supremum is not attained, we omit this analysis because it does not provide further insights.) 
Consider the network depicted in Figure 4 (Pigou 1920, Roughgarden 2003), with two 
parallel links, one with latency e(x) and the other with constant latency e(v). A demand of 
v is to be routed. In this situation, the cost of the equilibrium f is C(f) = vr(v), while the 
system optimum f* can be evaluated as follows: 

C(f*) = min {xe(x) + e(v)(v - x)} = v43(v) - max {x(e(v) - e(x))}. 0<x<v 0<x<v 

Hence, the ratio between the total latency of the user equilibrium and that of the system 
optimum is 

C(f)=/ 
C(f*) maxx>o{x(e(v)- e(x))} 1 - ()t 
C(0 

f 

- v L(v))- - ()- 

4. Computing (1 - f(S))-'. Because the results in the last subsection generalize the 
results by Roughgarden (2003), the bounds he obtains for linear functions, polynomials 
with positive coefficients, etc. apply here as well. In this section, we study bounds for more 
general latency functions. We start with two auxiliary lemmas. 

LEMMA 4.1. Let 2 be a family of continuous, nondecreasing latency functions e satis- 
fying e(cx) > s(c)f(x) for all c E [0, 1], for some real function s. Then, 

f(5L) < sup {x(1 - s(x))}. 
0<x<l 
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PROOF. Recall from (3.8) that fP(v, L) is defined as 

Ix(( ) mxa) P (v ,)= max -1 
O<x<v 

V 
ul- 

Rewriting x as v(x/v) and using the assumption, we can bound this expression from above 
by 

sup x- 1-sI = sup{x(1 -s(x))}, 
0<x<v V \ 0<x<l 

which implies the claim. 

LEMMA 4.2. Let $ be a family of continuous, nondecreasing latency functions e satis- 
fying (cx) 

_ 
s(c)+ e (x) for all c e [0, 1], for some real function s. Then, 

C(f) < C(f*)- lAID inf {xs(x)}, 
0<x<1 

where D = ZkeK dk is the total demand to be routed, f is a BMW equilibrium, and f* is a 
system optimum. 

PROOF. In this case, it is easy to see that 

x 
(x\ e(v)J(v, ) < sup --s- =- inf {xs(x)}. 

0<x<v V 0<x<l 

If we plug this into (3.9) with e = La and v = fa, we obtain 

C(f) < ~fl 
a(fa, 

La)La(fa)fa + e a(f*)f* 
- 

C(f*) - |AID inf {xs(x)}. O 
aEA aEA 0<x<1 

We now apply Lemmas 4.1 and 4.2 to specific classes of latency functions. Corollaries 
4.3 and 4.4 extend Theorem 2.1. Indeed, the following corollary implies that the price of 
anarchy is 4/3 for all nonnegative concave functions and this bound still holds in networks 
with capacities (assuming that a BMW equilibrium is chosen). Corollary 4.4 generalizes 
Roughgarden's bound for polynomials of degree n with positive coefficients. 

COROLLARY 4.3. If the set 2 of continuous and nondecreasing latency functions is 
contained in the set {L(.): L(cx) > cL(x) for c e [0, 1]}, then (1 - P(E))-1 

_ 
4/3. 

PROOF. Use Lemma 4.1 and note that supo<x,<{x(1 -x)} = 1/4. OI 
COROLLARY 4.4. If the set 5 of continuous and nondecreasing latency functions is 

contained in the set {L(.): L(cx) > c"n(x) for c E [0, 1]} for some positive number n, then 

(n + 1)1+1/n 
- (n + 1)1+1/" - 

n 

PROOF. Use Lemma 4.1 and note that supo<,,<{x(1 - x")} =n/(n+ 1)1+1/". O 
In particular, the price of anarchy in networks with quadratic or cubic latency functions 

is 1.626 and 1.896, respectively. It is 2.151 for nonnegative polynomials of degree 4. 
Finally, the following result comprises the case in which latency functions are logarithmic 

(i.e., L(x) = log(1 + x)). The BMW equilibrium offers an additive performance guarantee 
in this situation. 

COROLLARY 4.5. If the set S of continuous and nondecreasing latency functions is 
contained in the set {L(.): e(cx) > logb (c) + e(X) for c e [0, 1]}, then 

lAID 
C(f) C(f*) + 

elnb 
PROOF. Use Lemma 4.2 and note that infox<,{xlogb(x)} = -1/(elnb). O 
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5. Lower semicontinuous travel cost functions. Traffic assignment models customar- 
ily depend on the assumption of continuous travel cost functions. However, Bernstein and 
Smith (1994) pointed out that there are times when this assumption is not appropriate. In 
this situation, a more careful distinction between different versions of the equilibrium con- 
cept is essential. (These notions are equivalent to each other for continuous latency functions 
so that we have previously neglected to draw the fine line between them; however, recall 
the discussion on a behaviorally meaningful definition of a capacitated user equilibrium 
(Definition 3.1 versus (3.1)) at the end of S3.1.) 

While we do not want to engage in a discussion of that circumstance here and rather 
refer the reader to the very informative papers by Bernstein and Smith (1994) and de Palma 
and Nesterov (1998), let us borrow the following example from Florian and Hearn (1995) 
to illustrate that it may happen that none of the equilibrium concepts takes effect, with the 
exception of the BMW equilibrium. As in Figure 4, two parallel arcs connect an OD pair 
with demand rate 2. The travel cost function for the first are is e0(x0) = xa; for the second 
arc, it is 

b(X)=I Xb if xb<, 
xb bifxb>. 

Note that the solution xa = xb = 1 indeed is a BMW equilibrium, whereas no solution 
satisfies Definition 3.1 or condition (3.1). 

We will now sketch that, under minor modifications, Theorem 3.6 still holds in the 
more general setting of latency functions that are just lower semicontinuous. (Note that 
we maintain the monotonicity assumption.) Bernstein and Smith as well as de Palma and 
Nesterov underlined the importance of this class of travel cost functions. In particular, a 
BMW equilibrium always exists and it is a Nash equilibrium. Hence, in this more general 
setting, Theorem 3.6 still provides a bound on the inefficiency of certain Nash equilibria. 

A real function L is lower semicontinuous if e(x) < lim inf e(xn) for all x in its domain 
and all sequences (x,) with limno xn 

= x. Here, liminf e(xn) 
= lim,,n inf{f(xm): m > n}. 

In fact, if L is nondecreasing and lower semicontinuous, then e(x)= limy/,x L(y), and the 
limit always exists. (Recall that limy/x e(y) represents the limit of (e(yi)) with respect 
to any increasing sequence (yi) that converges to x from below; limY\x e(y) is similarly 
defined.) 

For a feasible (arc) flow x, we redefine Cf(x) to be the standard inner product between Vf 
and x, i.e., Cf(x):= (Vf, x), where Vf is a subgradient of ,aeA ffoa ,(x) dx at f satisfying 
the optimality conditions for (3.2). In other words, Vf satisfies a condition similar to (3.4), 
namely (Vf, x-f) > 0 for all feasible flows x. Moreover, note that 

limyvf 
(y) < (Vf)a < 

limy~\fa 
e0(y) for all a E A. The first of these inequalities together with the lower semicon- 

tinuity of e implies that C(f) < Cf(f). To proceed as we did in the proof of Theorem 3.6, 
we also need a slight technical change in the definition of P(v, L), which should now be 
defined as fl(v, f) := (1/vf(v)) maxxo>{x(e(v+) - e(x))}. Here, L(v+)= 

limy\, 
L(y). After 

these preparations, we can complete the proof. Let x be a feasible flow. We derive 

C (x) = (V,, x) < 

ea(fa)x. _ 
3(f0, La)e0(f0)f0 + 

ea(xa)xa I P(2e)C(f)+ C(x). 
aeA aeA aeA 

Recall that C(f) 
_ 

Cf(f) by lower semicontinuity and Cf(f) 
_ 

Cf(x) from the optimality 
conditions. Therefore, the claim follows by replacing x with a system optimum f*. 

Let us eventually note that it appears difficult to extend our main result to families of 
latency functions that are not lower semicontinuous. Consider an instance consisting of two 
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nodes connected by arcs a and b (similar to the one depicted in Figure 4) with unit demand. 
Let the latencies be ea(fa)= 1 and 

S if 0 < fb <l 

bb(fb)= L if b 

iffb > . 

The BMW equilibrium f routes all demand along are b for a total cost of 4/3. Although 
a system optimum cannot be attained, it can be approximated by a flow that routes 1/2 + e 
along a and the rest along b. For e - 0, the total cost goes to 3/4. Because our previous 
definition of I(f) assumes that latencies are lower semicontinuous, let us consider a more 
pessimistic notion, for which we can still show that an analog of Theorem 3.6 does not 
hold. So let fP(v, L) := (1/ve(v-)) supxo{x((v+) - ~(x-)))}, where L(x-) = limy/x~ (y). 
In the example, 3(SC) = sup,1, (v, e) = 5/12. Hence, (1 - p(L))-lC(f*) = 12/7 . 3/4 = 
9/7 < 4/3 = C(f). Consequently, Theorem 3.6 (or any reasonable extension thereof) does 
not hold for discontinuous functions in general. 

6. Conclusion. While Wardrop (1952) had used the concept of Nash equilibrium to 
describe user behavior in traffic networks, it has been exploited in traffic management sys- 
tems to predict and in proposals for route-guidance systems to prescribe user behavior (e.g., 
Prager 1954, Steenbrink 1974, Gartner et al. 1980, Boyce 1989). Yet, Nash equilibria in 
general and user equilibria in particular are known to be inefficient, and many experts have 
favored in principle the difficult-to-implement system optimum (Merchant and Nemhauser 
1978, Henry et al. 1991), which guarantees that the total travel time is minimal. Our results 
provide an a posteriori justification for employing user equilibria in traffic assignment mod- 
els. We have shown for a broader class of network models than considered before that the 
expense of working with user equilibria instead of system optima is limited. In actual fact, 
while we have confined the above presentation to capacity constraints, virtually all results 
apply to more general side constraints of the form f e X, for some convex set X C RA 
Capacity constraints just represent the simplest and arguably the most important class of 
side constraints. For further details see Stier-Moses (2004). 

The introduction of side constraints gives rise to multiple equilibria. In particular, the price 
of anarchy jumps to infinity, even in the case of linear link delay functions. Nevertheless, 
it is reassuring and encouraging that the best user equilibrium is still close to the system 
optimum, despite of the presence of capacities. Moreover, an equilibrium of that quality, 
namely the BMW equilibrium, can be efficiently computed. 

Let us finally remark that all results in this paper also carry on to the setting of nonatomic 
congestion games discussed by Roughgarden and Tardos (2004). Consequently, their find- 
ings also hold when side constraints are present (e.g., the elements of the ground set have 
capacities) and the cost functions satisfy the weaker assumptions made in the paper at 
hand. This comment also applies to models with nonseparable latency functions, where the 
latency of one arc may depend on the flow on other arcs as well. The price of anarchy 
for systems with symmetric nonseparable latency functions was studied in the context of 
nonatomic congestion games by Chau and Sim (2003), who also considered elastic demands. 
Subsequently, Perakis (2004) presented bounds on the price of anarchy for asymmetric non- 
separable latency functions and fixed demand, which actually are also valid in the presence 
of side constraints. 
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